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This paper aims at demonstrating the applicability of statistical spectroscopy and
genetic algorithms to the similarity studies. Statistical moments of the intensity distri-
butions are used as a basis for defining similarity distances between pairs of model spec-
tra. Model spectrum is taken as a sum of two Gaussian distributions characterized by
different parameters. As a result, dissimilarity maps are presented.
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1. Introduction

First studies on molecular similarity have been started about 25 years ago
[1]. Since then, many indices of molecular similarity have been defined and suc-
cessfully used in establishing criteria of molecular similarity [2]. In the compu-
tation of molecular similarity a large number of mathematical functions can be
used to derive measures of similarity for a pair of molecules starting from the
same set of structural descriptors [3,4]. Quantitative molecular similarity analy-
sis uses molecular descriptors such as topological indices [5] to identify molecu-
lar similarity for property prediction and for environmental risk assessment. One
should also mention other methods of similarity measures, as the well known 3D
QSAR method, comparative molecular field analysis [6].
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Another class of methods may be derived from the quantum-mechanical
description of a molecule and its interaction with the environment. Theoretically
it is possible to calculate the interaction of a molecule with the environment
by solving the appropriate Schrödinger equation. In particular, the electrostatic
potential energy function calculated using Born–Oppenheimer approximation
encodes all important features of a molecule. In order to extract this informa-
tion one can use the molecular spectra. Then, quantum similarity among mole-
cules may be derived from quantum chemical calculations [7–9]. One may also
use infra-red spectra to calculate molecular descriptors derived from the normal
coordinate eigenvalues [10].

In papers [11] and [12], we proposed a new set of similarity indices. These
indices relate shapes of molecular spectra. It is assumed that the degree of sim-
ilarity of molecules is correlated with the degree of similarity of their spec-
tra. According to the so called principle of moments [13], we expect that if, we
identify the lower moments of two distributions, we bring these distributions
to approximate identity. Similarity of distributions in two- and three-moment
approximations, in the context of the construction of envelopes of electronic
bands, has been analyzed in [14,15].

In this paper, the principle of moments is applied to the theory of molec-
ular similarity. We assume that molecules have similar properties if their inten-
sity distributions and, consequently, the corresponding statistical moments, are
approximately the same. A very clear meaning has the first moment, M1, which
describes the mean value of the distribution. The second centered moment, M ′

2,
is the variance, which gives the width of the distribution. M ′′

3 is the skewness
coefficient which describes the asymmetry of the spectrum. The kurtosis coeffi-
cient M ′′

4 is connected to the excess of the distribution. By the classification of
the molecules according to the spectral density distribution moments we can dis-
cover new characterictics in the field of molecular similarity.

In this paper, dissimilarity maps are presented. The correlation of particu-
lar descriptors (based on statistical moments), evident in similarity measures, is
shown. The problems restict to finding global maxima of multidimensional func-
tions and are solved using genetic algorithms.

2. Statistical theory of spectra and similarity

Moments of the intensity distribution, Iγ (E), belong to a set of fundamen-
tal concepts of statistical theory of spectra. The ikth moment of the continous
intensity distribution is defined as:

Mγ

ik
=

∫
C(E)

Iγ (E)Eik dE
∫

C(E)
Iγ (E) dE

, (1)
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where C(E) is the range of the energy for which the integrand does not vanish.
It is convenient to consider normalized spectra I γ (E) = N γ Iγ (E) for which the
area below the distribution function is equal to 1. Convenient characteristics of
the distributions may be derived from the properly scaled distribution moments.
Moments normalized to the mean value equal to zero (Mγ ′

1 = 0) are referred to
as the centered moments. The ikth centered moment reads:

Mγ ′
ik

=
∫

C ′(E)

I γ (E)(E − Mγ

1 )ik dE . (2)

The moments, for which additionally the variance is equal to 1(Mγ ′′
2 = 1)

are defined as

Mγ ′′
ik

=
∫

C ′′(E)

I γ (E)

⎡

⎣
(E − Mγ

1 )
√

Mγ

2 − (
Mγ

1

)2

⎤

⎦

ik

dE . (3)

In this work the model spectrum is approximated by a continous function
taken as a linear combination of two unnormalized Gaussian distributions cen-
tered at εi with dispersions σi , defined by the parameters
ci = 1/(2σ 2

i ), i = 1, 2:

I γ (E) = N γ

2∑

i=1

ai exp
[
−ci (E − εi )

2
]
. (4)

The normalization constant N γ is determined so that the zeroth moment of
the distribution I γ (E) is equal to 1.

The ikth moment of the distribution is equal to:

Mγ

ik
= N γ

2∑

i=1

∫

C(E)

ai exp
[
−ci (E − εi )

2
]

Eik dE . (5)

The analytical expressions for these moments as functions of parameters
ci , ai , εi are presented in [11].

Using moments as descriptors, we can define the similarity distances in the
sense of the ikth, property as [11]:

Dik = 1 − exp
[

−
(

Pα
(ik)

− Pβ

(ik)

)2
]

, (6)

where ik = 1, 2, . . . , n (k = 1, 2, . . . , n), correspond to a specific property and n
is the total number of properties taken into account in the comparison of a pair
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of spectra. The first property is taken as the mean value, the second as the width,
the third as the asymmetry, and the fourth as the excess of the compared distri-
butions, i.e. Pγ

(1)
= Mγ

1 , Pγ

(2)
= Mγ ′

2 , Pγ

(3)
= Mγ ′′

3 , Pγ

(4)
= Mγ ′′

4 , where γ = α, β.
The values of all the descriptors may vary from 0 (identical properties) to 1.

Using Dik , similarity measures S i1i2,...,ik
k (k is the number of properties taken

into account in the process of comparison) can be defined as a normalized infor-
mation derived from a comparison of a pair of distributions, referred to as α and
β [11]:

S i1i2,...,ik
k =

√
1
k

(
D2

i1
+ D2

i2
+ · · · + D2

ik

)
, (7)

where i1 < i2 <, . . . , ik .

3. Genetical algorithm and dissimilarity of spectra

The development of the genetic algorithms [16–18] has been inspired by the
evolutionary biology, in particular by inheritance, mutation, natural selection,
recombination or crossover. They may be classified as computational techniques
used for solving problems of optimization. The most common mathematical
optimization tasks are minimization and maximization and many classes of
problems in physical sciences can be treated as optimization problems. Data fit-
ting using least-squares or root finding problems for non-linear, coupled sys-
tems of equations can be treated as minimization problems. Any algebraic sys-
tem of equations can be solved as a residual minimization problem. Generally,
genetic algorithm is a search for solution which starts by generating a set of trial
solutions, called population, usually by choosing random values for all model
parameters. For each member of the population the goodness of the fit (fitness)
is evaluated. The next step is to generate the second generation (population)
of solutions. Pairs of solutions (parents) are selected and using genetic opera-
tors: crossover (or recombination), and mutation, new solutions are obtained.
The child population replaces the old one, the goodness of fit is evaluated, and
the process of selection of parents repeates again. Generally, the average fit-
ness increases by this procedure, since only the best organisms are selected for
breeding. The generational process is repeated until a terminational condition is
reached which can be a minimum criterium, reaching fixed number of genera-
tions, computation time, or combination of these condistions.

In this paper, the problem of searching for the most disimilar spectra is
treated as optimization. The maximization of functions defined in equations (6)
and (7) is performed.
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4. Results and discussion

We have considered an infinite number of spectra of the type

I γ (E) = N γ
[
a1 exp

[
−c1(E − ε1)

2
]

+ a2 exp
[
−c2(E − ε2)

2
]]

, (8)

where γ = {c1, a1, ε1, c2, a2, ε2}. As the reference spectrum is taken I α(E), where

α = {5.0, 1.0, 1.2, 5.0, 1.0, 2.7}. (9)

The particular parameters characterize the width (ci ), the amplitude (ai )
and the locations of the maxima (εi ) of the ith Gaussian component ai exp[−ci
(E − εi )

2] of I γ (E), where i = 1, 2.
The aim of this paper is to find spectra I β(E) which are the most dissim-

ilar to the reference spectrum in the sense of arbitrary properties (one or sev-
eral). The set of parameters which define the space in which the spectra I β(E)

are searched, has been restricted to

β = {5.0, 1.0, 1.2, 5.0 + δc, 1.0 + δa, 2.7 − δε}. (10)

Figures 1–4 present pairs of spectra with maximum dissimilarity defined by
specific dissimilarity conditions, referred to as dissimilarity maps. Solid lines cor-
respond to the reference spectrum I α(E) and the dashed ones represent I β(E).
In particular, Figure 1 corresponds to the conditions Dik = max for ik = 1
(upper left), ik = 2 (upper right), ik = 3 (lower left), and ik = 4 (lower right).
Figure 2 corresponds to the conditions Si1i2

2 = max for i1, i2, as indicated in the
figure. Figure 3 corresponds to the conditions Si1i2i3

3 = max for i1, i2, i3, as indi-
cated in the figure. Figure 4 corresponds to the conditions S1234

4 = max. The
maximum value of D or S means that the respective pair of distributions corre-
sponds to the smallest similarity in the sense of the considered properties within
the assumed range of parameters δc, δa, δε. The minimum value of D and S
is zero. This value is reached when a pair of identical spectra is compared and
δc = δa = δε = 0. The parameters δc, δa, δε are related to the second Gaussian
component (1 + δa) exp[−(5 + δc)(E − 2.7 + δε)2] of I β(E). In this paper, only
the amplitude, the width and the location of this Gaussian component is sub-
jected to variations and the ranges of the changes are restricted by the parameter
ranges:

δc ∈ 〈0; 20〉, δa ∈ 〈0; 10〉, δε ∈ 〈0; 1〉. (11)

The problem of finding global maxima of functions D(δc, δa, δε) and of
S(δc, δa, δε) within the assumed ranges of parameters (11) has been solved using
the genetical algorithm Pikaia [19] and the results are presented in table 1. The
initial population has been created by giving as the input the ranges (11) of the
parameters. The search for the parameters δc, δa, δε for which maxima of D or
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Figure 1. Dissimilarity maps corresponding to the maximum values of Dik indicated in the figures.
Pairs of distributions Iα and Iβ correspond to solid and dashed lines, respectively.

S are obtained has been terminated at the 500th generation. The second col-
umn presents the maximum values of the parameters displayed in the first col-
umn. The maximum values of D1 and D2 are rather small (0.323365 for D1 and
0.297217 for D2). This results in a small value of S12

2 (0.274429). The maximum
values of all the remaining similarity parameters are larger than 0.5. The max-
imum values of Dik in Figure 1 appear for maximal amplitude of the second
Gaussian component of I β (maximal δa). D2 has its maximum for very close
location of the second Gaussian component of I β to the first one (δε is max-
imal, the last column in table 1). The remaining maxima in figure 1 appear for
the maximal shift of the component Gaussians of I β (δε = min = 0.0). As one
should expect, the most narrow distribution I β is the one which is the most dis-
similar to I α in the sense of the width. Then, D2 has its maximum for a large
value of δc. A big dissimilarity in the sense of the mean values of I β and I α
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Figure 2. Dissimilarity maps corresponding to the maximum values of Si1i2
2 indicated in the figures.

Pairs of distributions Iα and Iβ correspond to solid and dashed lines, respectively.
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Figure 3. Dissimilarity maps corresponding to the maximum values of Si1i2i3
3 indicated in the

figures. Pairs of distributions Iα and Iβ correspond to solid and dashed lines, respectively.

is for the minimal value of δc, i.e. the intensity of I β is located in its second
Gaussian component with a very small first component. The largest dissimilarity
in asymmetry results in a medium value of δc.

In figures 2–4 the pairs of distributions which characterize the smallest simi-
larity in sense of several properties are presented. These pairs of spectra are com-
binations of two (figure 2) of three (figure 3) of four (figure 4) properties which
are independently shown in figure 1. The conditions for the largest dissimilarity
in sense of all S are realized by the maximal amplitude of the second Gaussian
component of I β(E) (maximal δa). The exception is S12

2 case where the intensity
of I β(E) is mainly located around the first component (δa = 0). In this way the
smallest similarity of I α(E) and I β(E), in sense of the combination of the mean
values and of the widths, has been obtained. However δa is big both for D1 and
for D2 and this feature is not observed for S12

2 (there is no correlation between
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Figure 4. Disimilarity map corresponding to the maximum value of S1234
4 . A pair of distributions

Iα and Iβ correspond to solid and dashed lines, respectively.

Table 1
Values of parameters.

Max δc δa δε

D1 0.323365 0.000000 9.999900 0.000000
D2 0.297217 19.39400 9.999900 0.999990
D3 0.974955 7.377800 9.999900 0.000000
D4 1.000000 3.091800 9.999900 0.000010
S12

2 0.274429 19.99940 0.000000 0.999990
S13

2 0.716882 5.134200 9.999800 0.000000
S14

2 0.743155 0.000200 9.999800 0.000010
S23

2 0.695311 6.678400 9.999900 0.000000
S24

2 0.737678 19.34680 9.999900 0.999990
S34

2 0.987557 7.390200 9.999900 0.000000
S123

3 0.590453 4.786400 9.999900 0.000000
S124

3 0.612259 0.000000 9.999800 0.000020
S234

3 0.809715 6.690400 9.999900 0.000000
S134

3 0.822160 5.094400 9.999900 0.000000
S1234

4 0.715175 4.769400 9.999900 0.000000

δa for S12
2 and δa for D1 and D2). A small shift of the second component (max-

imal δε) of I β(E) in the case of S12
2 is the second factor which results in the

compensation of intensity of I β(E) around the low energy limit of spectrum.
Contrary to S12

2 case, the parameters δc, δa, δε for other Si1i2
2 similarity measures

are rather well correlated with their counterpounts of the component Di1 and
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Di2 similarity distances. The dissimilarity map for S13
2 is intermediate between

maps for D1 and for D3. The parameters for S13
2 seen in table 1 are also inter-

mediate between those for D1 and D3. The maps for S14
2 , S23

2 , S24
2 , S34

2 contain
mainly information about one component. This is also evident in the parame-
ters in table 1. Similarity measure S14

2 mainly resembles D1, S23
2 – D3, S24

2 – D2,
andS34

2 – D3.
Taking into account three properties (figure 3) results in dissimilarity maps

which are very similar to each other for all considered i1, i2, i3. Considering
more properties we converge to one dissimilarity picture which is presented in
figure 4. The dissimilarity map for four properties is not very different from the
maps for three properties. The parameters δc, δa, δε for S3 and S4 are in between
for the component D distances.

Summarizing, the genetical algorithms are an efficient tool for study of
molecular similarity. Using these methods, similarity, and in particular dissimi-
larity, maps for arbitrary given similarity conditions, with a high precision and
saving computing time, can be created. The application of the presented method
to real cases is straighforward and is prepared for the publication.
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[15] D. Bielińska-Wąż in: Symmetry and Structural Properties of Condensed Matter, eds. T. Lulek

et al. (World Scientific, Singapore, 1999), pp. 212–221.
[16] D.E. Goldberg, Genetic Algoritm in Search, Optimization & Machine Learning (Addison-

Wesley, Reading, MA, 1989).
[17] J.R. Koza, Genetic Programming: on the Programming of Computers by Means of Natural Selec-

tion (MIT Press, Cambridge, 1992).
[18] Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution Programs (Springer, New

York, 1994).
[19] P. Charbonneau, Astr. J. Sup. Ser. 101 (1995) 309.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /DEU <>
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


